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Integration of real-time optimization and control with higher level decision-making (scheduling and plan-
ning) is an essential goal for profitable operation in a highly competitive environment. While integrated
large-scale optimization models have been formulated for this task, their size and complexity remains
a challenge to many available optimization solvers. On the other hand, recent development of powerful,
large-scale solvers leads to a reconsideration of these formulations, in particular, through development
of efficient large-scale barrier methods for nonlinear programming (NLP). As a result, it is now realistic to
eal-time optimization
odel predictive control
oving horizon estimation
onlinear programming
ensitivity

solve NLPs on the order of a million variables, for instance, with the IPOPT algorithm. Moreover, the recent
NLP sensitivity extension to IPOPT quickly computes approximate solutions of perturbed NLPs. This allows
on-line computations to be drastically reduced, even when large nonlinear optimization models are con-
sidered. These developments are demonstrated on dynamic real-time optimization strategies that can be
used to merge and replace the tasks of (steady-state) real-time optimization and (linear) model predictive
control. We consider a recent case study of a low density polyethylene (LDPE) process to illustrate these
concepts.
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. Introduction

For over two decades, real-time optimization has evolved
o standard practice in the chemical and petroleum industry.
he ability to optimize predictive models provides a major step
owards linking on-line performance to higher-level corporate
lanning decisions. As described in Grossmann (2005); Kadam and
arquardt (2007); Engell (2007), these decisions form a hierar-

hy as seen in Fig. 1, with levels of decision-making that include
lanning, scheduling, site-wide and real-time optimization, model
redictive control and regulatory control. In this pyramid, note that
he frequency of decision-making increases from top to bottom,
hile the overall impact of decision-making increases from bot-

om to top. Moreover, optimization models for decision-making
ave been developed for all but the bottom-most level. Here, plan-

ing and scheduling decision models are often characterized by

inear models with many discrete decisions. These are usually
epresented as mixed integer linear programs (MILPs), and occa-
ionally mixed integer nonlinear programs (MINLPs) that capture

∗ Corresponding author. Tel.: +1 412 268 2232; fax: +1 412 268 7139.
E-mail addresses: lb01@andrew.cmu.edu (L.T. Biegler),
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ey nonlinear elements. On the other hand, site-wide and real-
ime optimization require nonlinear process models which usually
eflect steady-state performance of the plant, while model pre-
ictive control (MPC) is often characterized by linear dynamic
odels.
Communication and interaction among levels requires decisions

ade at higher levels to be feasible at lower levels. More-
ver, the performance described by lower level models must be
eflected accurately in decisions made at higher levels. Clearly, the
trongest communication and interaction is through direct inte-
ration of optimization formulations between two or more levels.
uch integration has been described for planning and schedul-
ng (Grossmann, 2005), as well as with dynamic optimization
or batch processes (Bhatia & Biegler, 1996; Flores-Tlacuahuac &
rossmann, 2006). Similarly, site-wide and real-time levels can
e integrated through compatible steady-state optimization mod-
ls. However, as noted and analyzed extensively in Yip and Marlin
2004), integrated MPC and real-time optimization may suffer
nconsistencies due to mismatch of linear dynamic and steady
tate nonlinear models, and also because of conflicting objec-

ives. While this inconsistency can be tolerated for processes
ith decoupled dynamics (e.g., in refineries with fast rejection

f disturbances and slow dynamic trends), it remains severe for
onlinear processes, especially those that are never in steady
tate. Examples of these include batch processes, power plants and

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:lb01@andrew.cmu.edu
mailto:vzavala@andrew.cmu.edu
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Fig. 1. (a) Decision-making hierarchy in op

olymerization processes with load changes and grade transitions,
nd production units that operate in a periodic manner, such as
imulated moving beds (SMBs) (Toumi, Diehl, Engell, & Schlöder,
005) and pressure swing adsorption (PSA) (Jiang, Biegler, & Fox,
003).

As motivated in Fig. 1b, treating these nonlinear processes
equires on-line optimization with nonlinear dynamic mod-
ls, including strategies such as nonlinear model predictive
ontrol (NMPC) (Bartusiak, 2007). Research in this direction
ncludes development and application of detailed and accurate
rst-principles differential-algebraic equation (DAE) models for
ff-line dynamic optimization. Numerous case studies (Busch,
ldenburg, Santos, Cruse, & Marquardt, 2007) have demonstrated

he effectiveness of off-line dynamic optimization. In addition, a
omprehensive research effort on real-time dynamic optimiza-
ion is described in Grötschel, Krumke, and Rambau (2001)
nd several large-scale industrial NMPC applications have been
eported (Nagy, Franke, Mahn, and Allgöwer, 2007). Moreover,
n addition to enabling NLP solvers, there is a better under-
tanding of NMPC stability properties and associated dynamic
ptimization problem formulations that provide them (Camacho
Bordons, 2007; Magni & Scattolini, 2007). Finally, from recent

ctivity in dynamic real-time optimization, it is clear that with
mproved optimization formulations and algorithms, the role of
MPC can be greatly expanded to include economic objectives
nd multiple operating stages over the predictive horizon (with
ransitions due to product change-overs, nonstandard cyclic oper-
tions, or anticipated shutdowns) (Engell, 2007; Grötschel et al.,
001).

In this study we explore optimization formulations that merge
TO and MPC tasks and replace them with NMPC strategies that
erform the role of dynamic real-time optimization, as shown in
ig. 1. This approach stems from recent work based on recently
eveloped state estimation and control strategies that rely on
LP sensitivity for on-line calculations (Zavala, Laird, & Biegler,
008). As a result, on-line computational costs remain negligi-
le even for very large optimization models. In the next section
e briefly describe the dynamic optimization problem and sum-
arize the simultaneous collocation approach used to solve it.

ection 3 then discusses on-line strategies for NMPC and moving
orizon estimation (MHE) based on NLP sensitivity, for dynamic

ptimization and state estimation, respectively. This is followed
n Section 4 by a brief presentation of a recent case study
n grade transitions for a realistic LDPE process. Finally, Sec-
ion 5 summarizes these concepts and outlines areas for future
ork.
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ns. (b) Structure for on-line optimization.

. Large-scale dynamic optimization

Consider the optimization problem with N dynamic stages in
he following form:

in
N∑
k=1

ϕ(z(tk), uk) (1a)

.t.
dzk(t)

dt
= f (zk(t),wk(t), uk), t ∈ [tk−1, tk] (1b)

(zk(t),wk(t), uk) = 0 (1c)

k(tk−1) = zk−1(tk−1) (1d)

L
k ≤ uk(t) ≤ uU

k (1e)

L
k ≤ wk(t) ≤ wU

k (1f)

L
k ≤ zk(t) ≤ zU

k , k = 1, . . . , N (1g)

here zk(t) ∈ �nz is the vector of state variables in stage k, uk ∈ �nu
s the vector of manipulated variables, and wk(t) ∈ �nw is a vector
f algebraic variables. As constraints we have the differential and
lgebraic equations (DAEs) (1b) and (1c) which we assume without
oss of generality are index one.

A number of approaches can be taken to solve problem (1). These
nclude sequential methods, also known as control vector parameter-
zation, multiple shooting and the simultaneous collocation approach.
n this last approach, we discretize both the state and control pro-
les in time using collocation on finite elements to form a large
LP. Equivalent to a fully implicit Runge-Kutta method with high
rder accuracy and excellent stability properties, this discretization
s also a desirable way to obtain accurate solutions for boundary
alue problems and related optimal control problems. With this
imultaneous approach, the DAE system is solved only once, at the
ptimal point, and therefore difficult intermediate solutions are
voided. Also, control variables are discretized at the same level as
he state variables, so that under mild conditions (see Hager, 2000;
ameswaram & Biegler, 2008) the Karush Kuhn Tucker (KKT) con-
itions of the NLP are consistent with the optimality conditions of
he discretized variational problem; fast convergence rates to vari-
tional solutions have also been shown. Finally, the simultaneous
ollocation approach deals with unstable systems in a straightfor-

ard manner and allows direct enforcement of state and control

ariable constraints, at the same level of discretization as the state
ariables of the DAE system.

On the other hand, simultaneous collocation approaches
o require efficient, large-scale optimization strategies (Biegler,



d Chemical Engineering 33 (2009) 575–582 577

C
b
t
a
&
s
m
c
i
t
s
T
e
m

r
c
g
a
d
i
n
c
a
s
s
o
o
B

3

r
t
s
N
v
t
f
r

n
p
i
l
c
p

t
g
o
a
i
s
a

3

p
m
t
p

t
stability of the closed-loop system.
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ervantes, & Wächter, 2002; Jockenhövel, Biegler, & Wächter, 2003)
ecause they directly couple the solution of the DAE system with
he optimization problem. To address the resulting large-scale NLP,
full space, interior point (or barrier) solver, called IPOPT (Wächter
Biegler, 2006), has recently been developed, which solves large-

cale NLPs very efficiently. IPOPT applies a logarithmic barrier
ethod to inequality constraints in the NLP, solves a set of equality

onstrained optimization problems for a monotonically decreas-
ng sequence of the barrier parameter, and quickly converges to
he solution of the original NLP. This sequence of problems is
olved with sparse Newton method applied to the KKT conditions.
he IPOPT algorithm enjoys excellent convergence properties and
xhibits superior performance, especially on large dynamic opti-
ization problems.
As a result of the optimization formulation and solution algo-

ithm, the simultaneous collocation approach has much lower
omplexity bounds than competing dynamic optimization strate-
ies. As shown in Zavala, Laird, and Biegler (2008), a particular
dvantage of the simultaneous approach is that exact second
erivatives can be obtained very cheaply and the expensive DAE

ntegration and sensitivity steps are avoided. Also, note that as the
umber of discretized control profiles increases, one has signifi-
ant computational advantages with the simultaneous collocation
pproach. Moreover, IPOPT can be adapted to different problem
tructures and can accommodate a wide variety of linear decompo-
ition methods. This allows the efficient solution of very large NLPs
n the order of several million variables, constraints and degrees
f freedom (Hagemann, Schenk, & Wächter, 2005; Zavala, Laird, &
iegler, 2008c).

. On-line dynamic optimization

As seen in Fig. 2, realization of on-line dynamic optimization
equires two elements. First, the current state of the process and
he model parameters must be estimated from the process mea-
urements (the moving horizon estimator (MHE) considered here).
ext, with the updated model, optimal values of the manipulated
ariables need to be calculated (performed here by the NMPC con-
roller). These elements are time-critical applications that require
ast and reliable algorithms, as the updated manipulated variables
equire optimization of two problems represented by (1).

However, efficient NLP formulations and fast NLP solvers are
ot enough for large-scale on-line dynamic optimization. Any com-

utational delay means that the applied control is based on state
nformation that no longer represents the current plant. Moreover,
arge delays can degrade performance and even destabilize the pro-
ess (Findeisen & Allgöwer, 2004). Therefore, to incorporate first
rinciple models for on-line dynamic optimization, it is essential

A

•

Fig. 3. NMPC moving h
Fig. 2. Tasks for dynamic on-line optimization.

o separate these complex optimization computations into back-
round and on-line components and to minimize the cost of the
n-line component. Here we assume that solution of both the MHE
nd NMPC problems can be done within one or more sampling
ntervals in “background” for an initial condition “close” to the mea-
ured (or estimated) state. Once the new process state is estimated,
perturbed problem is then solved to update the NLP solution.

.1. NMPC formulation

To describe this approach, we first consider the optimization
roblem for nonlinear model predictive control written over the
oving time horizon shown in Fig. 3. After temporal discretiza-

ion with collocation on finite elements, the dynamic optimization
roblem (1) for x(k), the state available at time tk, can be written as

PN(x(k)) min
vl
J(x(k)) = � (zN) +

N−1∑
l=0

 (zl, vl)

s.t. zl+1 = f (zl, vl), l = 0, . . . , N − 1, z0 = x(k),
zl ∈X, zN ∈Xf , vl ∈U (2)

For this optimization problem we require the following assump-
ions so that J(x(k)) is a Lyapunov function and we can guarantee
ssumption 1 (Nominal stability assumptions of NMPC).

The terminal penalty� (·), satisfies� (z)> 0,∀z ∈Xf \ {0} (Magni
& Scattolini, 2007).

orizon problem.
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There exists a local control law u = hf (z) defined on Xf ,
such that f (z, hf (z)) ∈Xf ,∀z ∈Xf , and � (f (z, hf (z))) −� (z) ≤
− (z, hf (z)),∀z ∈Xf .
The optimal stage cost  (x, u) satisfies ˛p(|x|) ≤  (x, u) ≤ ˛q(|x|)
where˛p(·) and˛q(·) areK functions, i.e.,˛(0) = 0, ˛(s)> 0,∀s >
0 and strictly increasing.

It should be noted that while not all economic functions apply,
he above property of the  functions is still sufficiently general
o allow economic terms and thus serve as a Lyapunov function. It
hould be noted that the use of economic objectives within this MPC
ormulation is also addressed in a number of studies (Bartusiak,
007; Engell, 2007; Odloak, Zanin, & Tvrzska de Gouvea, 2002;
barbaro & Johansen).

From the solution of this problem, we obtainu(k) = v0 and inject
t into the plant. In the nominal case, this drives the state of the plant
owards x(k + 1) = z(k + 1) = f (x(k), u(k)). Once x(k + 1) is known,
he prediction horizon is shifted forward by one sampling instant
nd problem PN(x(k + 1)) is solved to find u(k + 1). This recursive
trategy gives rise to the feedback law, u(k) = hid(x(k)) which we
all the ideal NMPC controller (neglecting computational delay).

Now consider the state of the plant, x(k), at tk and that we already
ave the control action u(k). In the nominal case the system evolves
ccording to the dynamic model in (8) starting at tk, and we can pre-
ict the future state exactly (i.e., x(k + 1) = z(k + 1) = f (x(k), u(k)))
nd compute the future control action by solving PN(z(k + 1)) in
dvance. If this problem can be solved before tk+1, then u(k + 1) =
id(x(k + 1)) will already be available without on-line computational
elay. Moreover, it is easy to prove (Zavala & Biegler, in press) that
his strategy has identical nominal stability properties as the stan-
ard or ideal NMPC controller.

On the other hand, a realistic controller must also be robust
o model mismatch, unmeasured disturbances and measurement
oise. Here, ideal NMPC provides a mechanism to react to these

eatures with some inherent robustness. In particular, tolerance
o mismatch and disturbances can be characterized by input-to-
tate stability (Magni & Scattolini, 2007; Zavala & Biegler, in press).
he key to a realistic extension of our NMPC strategy is to note
hat problem PN(z(k + 1)) is parametric in its initial conditions,
ith parameters given by p0 = z(k + 1) and p = x(k + 1). One can

epresent PN(z(k + 1)) as

in F(x, p0) s.t. c(x, p0) = 0, x ≥ 0 (3)

here x contains all the variables of problem (2). We note that the
nterior-point solver IPOPT solves (3) by applying Newton’s method
o the following equations:

F(x, p0) + ∇c(x, p0)�− � = 0 (4a)

(x, p0) = 0 (4b)

V = �e (4c)

here X = diag(x), V = diag(�), and the barrier parameter � is
radually reduced to zero so that the solution sequence of (4) con-
erges to the solution of (3). From the optimality conditions of (3)
valuated at the solution x∗ one can obtain, under mild regularity
onditions of the NLP (Fiacco, 1983), a second order estimate of the
erturbed solution to

in F(x, p), s.t. c(x, p) = 0, x ≥ 0 (5)
.e.,�x ≈ x∗(p) − x∗(p0), from the linear system:

W∗ A∗ −I
AT∗ 0 0
V∗ 0 X∗

][
�x
��
��

]
= −

[∇L(x∗, �∗, �∗, p)
c(x∗, p)

0

]
(6)

w
p
v
w
i
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here W∗ is the Hessian of the Lagrangian function L(x, �, �) =
(x) + c(x, p0)T�− xT�, and A∗ = ∇c(x∗, p0). Because the KKT
atrix in (14) is identical to the iteration matrix used in IPOPT,

t is already available in factorized form. Hence, once the next state
s known, �x is formed and the desired approximate solution can
e obtained with a single on-line backsolve. As described in Zavala
t al. (2008a) and Zavala and Biegler (in press), this on-line step
sually requires less than 1% of the dynamic optimization calcula-
ion.

The resulting advanced step NMPC (as-NMPC) controller con-
ists of the following steps:

1. Having x(k) and u(k), obtain evaluate z(k + 1) = f (x(k), u(k)) and
solve PN(z(k + 1)) in background.

. Once the measured (or estimated) state x(k + 1) is obtained from
the plant, obtain u(k + 1) on-line as a perturbed solution using
the linear system (14) derived from PN(z(k + 1)) with p0 = z(k +
1) andp = x(k + 1).

. Set k = k + 1 and return to Step 1.

Note from the above steps that the advanced step NMPC con-
roller is able to handle the nonlinearity of the system since it
pdates the KKT matrix at each time step, while avoiding the
ifficulty of computational delay. Moreover, as expressed by the fol-

owing property, as-NMPC has input-to-state robustness properties
hat are essentially as strong as ideal NMPC.

heorem 1 (Robust Stability of advanced step NMPC). Under
ssumption 1, the cost function J(x) obtained from the advanced-
tep controller is an input-to-state Lyapunov function and the
esulting as-NMPC controller is input-to-state stable (Zavala &
iegler, in press).

.2. Moving horizon estimation

Moving horizon estimation (MHE) has emerged as a supe-
ior alternative for state estimation over traditional observers and
alman filters. As shown recently in Rao, Rawlings, and Mayne

2003), MHE has desirable asymptotic stability properties and com-
ares very well to extended Kalman filters (EKF) (Haseltine &
awlings, 2005). MHE requires the on-line solution of dynamic
ptimization problems, but sensitivity-based optimization (as in
he previous section) can also be applied to these problems (Zavala
t al., 2008b). Here we apply similar concepts based on background
nd on-line calculations to the NLP for the k th horizon of an MHE
roblem. From problem (1) the MHE problem can be represented
y

MN(�(k)) min
z0,	l


(�(k))

= (z0−z̄0(k))T�0
−1(k)(z0 − z̄0(k)) + (yk−h(zN))TRN

−1(yk−h(zN))

+
N−1∑
l=0

(y(k − N + l) − h(zl))
TRl

−1(y(k − N + l) − h(zl))

+
N−1∑
l=0

	T
l Ql

−1	l s.t. zl+1 = f (zl, ul) + 	l, l = 0, . . . , N − 1,

zl ∈Z, 	l ∈� (7)
here y(k) ∈ �ny is the vector of measurements, h(z) is the output
rediction based on the state, 	l ∈ �n	 is a vector of process noise
ariables, z̄0(k) is the current prior reference for the initial state
ith covariance �0

−1(k), and �(k) are the problem data contain-
ng the current measurement history. The objective function has a
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Fig. 4. Moving horizon formulation with actual measureme

ypical least-squares form that includes the arrival cost, deviations
or measured variables and minimization of process noise. This for-

ulation is the dual of the NMPC problem with a DAE model in the
ame form as PN(x). To partition the background and on-line cal-
ulations, at time tk and having the current state estimate x(k) and
ontrol u(k) we predict the future measurement through forward
imulation z(k + 1) = f (x(k), u(k)), ȳ(k + 1) = h(z(k + 1)) as shown
y the open circles in Fig. 4.

The development of the as-MHE strategy follows along the same

ines as in the previous section. The predicted problem is solved
n background using IPOPT and the sensitivity system (14) is con-
tructed. Once new measurement y(k + 1) is received at tk+1, we
eplace the predicted measurement ȳ(k + 1) by its measured coun-
erpart; these are treated as parametersp0 andp, respectively. Using

s
l
T
(

Fig. 5. High-pressure LDPE
losed circles) and predicted measurements (dotted circles).

he algorithm described in Zavala et al. (2008b), nonlinear models
an be updated and estimated on-line with very little on-line cost,
nd fast MHE and NMPC can be done on-line with large-scale first
rinciple models. As with as-NMPC, nonlinear MHE problems can
e solved with on-line calculations that usually require less than
% of the time to solve the dynamic optimization problem.

. LDPE grade transition case study
To demonstrate the advantages of the as-NMPC and as-MHE
trategies, we consider operating scenarios for a high-pressure
ow-density polyethylene (LDPE) process described in Cervantes,
onelli, Brandolin, Bandoni, and Biegler (2002) and Zavala et al.
2008a). As seen in Fig. 5, ethylene is polymerized in a long tubu-

process flowsheet.
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ar reactor at high pressures (2000–3000 atm) and temperatures
150–300◦C) through a free-radical mechanism. Accordingly, a large
umber of compression stages is required to obtain these extreme
perating conditions. The final product is recovered by flash sep-
ration. These flexible processes obtain several different product
rades by adjusting the reactor operating conditions. Desired prop-
rties such as polymer melt index are obtained by control of the
eactor temperature, pressure and concentration of a chain-transfer
gent (usually butane and propylene).

The process represents a difficult dynamic system; reactor
ynamics are much faster than responses in the recycle loops and

ong time delays are present throughout the compression and sep-
ration systems. Due to the complex, exothermic nature of the
olymerization, the reactor temperature and pressure are enforced
trictly along the operating horizon following fixed recipes. The
ain operational problem in these processes consists of providing

ast adjustments to the butane feed and purge stream to keep the
elt index at a desired reference value. This is done during differ-

nt operating stages such as grade transitions (switching between
wo different operating points) and normal operation (disturbance
ejection). The resulting DAE model of this process contains over
50 state variables and differential-algebraic equations. A detailed
escription of the process model can be found in Cervantes et al.
2002).

.1. Performance of NMPC controller

We now consider an appropriate optimal feedback policy that
inimizes the switching time between steady states correspond-

ng to the production of different polymer grades. This poses a
evere test of the as-NMPC algorithm as it needs to optimize over
large dynamic transition. The NMPC problem solved on-line at

very sampling time tk is given by

min

∫ tk+N

tk

(wC4 (t) −wr
C4

)2 + (FC4 (t) − Fr
C4

)2 + (Fpu(t) − Fr
pu)2 dt

s.t. DAEs for LDPE model with z(tk) = x(k) (8)
here the inputs are the flowrates of butane and purge streams,
C4 and Fpu, respectively, the output is the butane weight fraction
n the recycle stream, wC4 , and superscript ‘r’ denotes a reference
alue. Here we consider equal control and prediction horizons. Note
hat while the objective in this study is of the tracking type, it has

c
p
o
w

Fig. 6. Closed-loop performance of the ideal NMPC (solid) and as-NMP
mical Engineering 33 (2009) 575–582

direct economic effect in that it minimizes the transition time to
new polymer grade. Moreover, in a more recent study (Zavala &
iegler, 2008), we have also considered the LDPE production rate
s the objective function within this NMPC framework.

Using the simultaneous collocation approach, problem (16) is
onverted into a large-scale NLP with 15 finite elements with 3 col-
ocation points in each element. The resulting NLP contains 27,135
onstraints, and 30 degrees of freedom. For the dynamic optimiza-
ion, long prediction times on the order of hours are used with
ampling times on the order of minutes; here we set N = 15 and
t = tk+1 − tk=6 min. Note that the background NLP must be solved

n under this time.
In this case study, we ignore the computational delay that affects

he closed-loop response in order to assess the best behavior of the
deal NMPC controller. Also, the plant response is obtained by intro-
ucing both strong and random disturbances to the time delays in
he recycle loops. The performance of the NMPC approaches is pre-
ented in Fig. 6. Note that the optimal feedback policy involves the
aturation of both control valves for the first 2500 s of operation,
ith the final flow rates set to values corresponding to the new

perating point. It is interesting to observe that the output pro-
le for as-NMPC is indistinguishable from the full optimal solution,
ith only small differences in the input profiles.

The on-line and background computational times are also worth
omparing. Ideal NMPC requires around 351 CPU seconds and about
0 IPOPT iterations of on-line computation while as-NMPC requires
nly 1 CPU second by using only a single backsolve to obtain the
pdated solution vector. In addition to reducing on-line computa-
ion by over 300 times, as-NMPC also serves as an excellent basis
or effective initialization of the next NLP problem solved in back-
round. From the perturbed solution provided by the sensitivity
alculation (14), as-NMPC provides very accurate initializations for
ll the sampling times. Leading to only 2–3 IPOPT iterations, as-
MPC also reduces the background NLP computation by up to a

actor of 5.

.2. Performance of fast moving horizon estimator
To demonstrate the MHE algorithm on the LDPE process, we
hoose the butane concentration in the recycle loop as the out-
ut measurement. Measurement data are generated by simulation
f the dynamic model, using fixed control profiles over a horizon
ith 60 sampling points. This output profile is then corrupted using

C (dashed) approaches with output wC4
and inputs FC4

and Fpu.
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ig. 7. Measured, estimated and true profiles of the output variable for LDPE case
tudy.

aussian noise with � = 0.05. The resulting least-squares objective
unction:

in
z0

(z0 − z̄0)T˘−1
0 (z0 − z̄0) +

N∑
l=0

1
�2

(yC4 (k − N + l) − ȳC4 (l))2 (9)

nd the model equations are used for the formulation of the esti-
ation problem. Here, yC4 (l), ȳC4 (l) are the butane measurement

nd prediction at sampling time tk, respectively, vector z0 ∈ �294

ontains the initial conditions for all the states with a given a priori
stimate z̄0 obtained from simulation and ˘−1

0 = 10 Inz . With N =
5 finite elements and 3 collocation points for the dynamic model,
he resulting NLP contains 27,121 constraints and 295 degrees of
reedom.

Computational results are reported for this problem in Zavala
t al. (2008b). Here IPOPT requires an average of 6 iterations to
olve the MHE problem and about 200 CPU seconds. The majority
f this CPU time is devoted for the factorization of the KKT matrix.
onsequently, a standard MHE algorithm would introduce an on-

ine computational delay of more than 3 min. On the other hand,
he as-MHE algorithm needs only a single backsolve on-line, which
equires less than a single CPU second. Moreover, the approximate
olutions obtained from NLP sensitivity can be used to warm-start
he algorithm for the solution of the background nominal problems
t each sampling time, thus reducing the cost of the background
roblems to only 3–5 iterations.

Finally, as shown in Zavala et al. (2008b) a byproduct of the IPOPT
ptimization allows us to determine easily that this solution of the
HE problem yields observable state estimates with the given mea-

urement data. Fig. 7 presents the measured, estimated and true
rofiles of the output variable along 60 sampling times. Here the

ast MHE algorithm is able to estimate accurately the true output
ariable, and the noise perturbations do not induce drastic changes
etween neighboring problems.

. Conclusions

Integration of optimal decision-making for operations is an
mportant task for today’s highly competitive chemical indus-
ry. In particular, tying higher-level decisions to optimal on-line
perations is essential. This paper considers challenges posed
y real-time optimization and model predictive control interac-
ions, as they both comprise large-scale NLP problems, often with
onflicting models and objectives. We show that simultaneous col-
ocation and fast NLP solvers, like IPOPT, allow the integration
f real-time optimization and model predictive control through
single dynamic optimization formulation. In addition, concepts
rom NLP sensitivity allow on-line calculations for state estima-
ion, control and dynamic optimization to be drastically reduced
ith almost all of the optimization calculations performed in a

ackground step. These concepts are demonstrated on a large
DPE process where on-line optimization computations were

K

K

mical Engineering 33 (2009) 575–582 581

educed by over two orders of magnitude, with negligible loss of
erformance.

The capability to solve large optimization problems with negli-
ible on-line costs leads to a number of opportunities for dynamic
eal-time optimization. In particular, extensions of MHE and NMPC
roblems can be formulated to include on-line economic opti-
ization over much longer time horizons. This becomes especially

mportant for multi-stage process decisions which require optimal
ransitions between different operating modes. These challeng-
ng large-scale NLPs can be handled by specialized decomposition
trategies that can be exploited by IPOPT. Finally, the on-line
ealization of dynamic optimization requires treatment of model
ismatch and parametric uncertainty, noise models that capture

rocess and measurement errors, and capabilities for fault detec-
ion and optimal recovery from upsets. All of these need to be
onsidered within the dynamic optimization strategy and remain
s topics for future work.
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